Music Classification Using Neural Networks

Leo Y. Liu, Lu Wang, Yang Yu

UNC STOR

- 1000 audio tracks each about 30 seconds long
- 10 types: Blues, Classical, Country, Disco, Hiphop, Jazz, Metal, Pop, Reggae and Rock
- 22050Hz Mono 16-bit audio files in .wav format

https://drive.google.com/open?id=OBzPvXAjSgVbXLUxsSWcOc2k1MXM.

5 songs are picked form each of the 4 genres: Blues, Classical, Country, Disco.

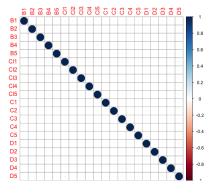


Figure 1: Correlation Plot

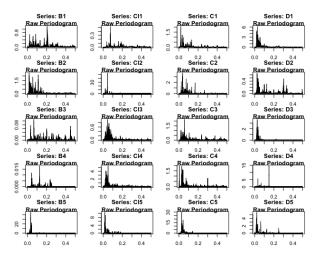


Figure 2: Periodogram

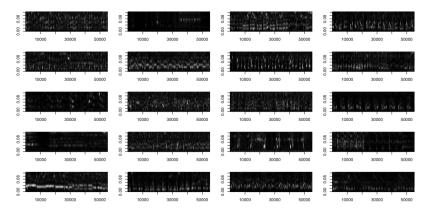
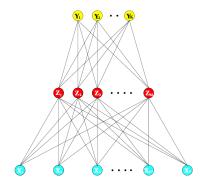


Figure 3: Gabor Transformation

Model: Neural Network

A neural network is a two-stage regression or classification model, typically represented by a network diagram as following.



$$Z_m = \sigma(b_{0m} + w_m^T X), m = 1, \dots, M,$$

$$T_k = b'_{0k} + \beta_k^T Z, k = 1, \dots, K,$$

$$Y_k = f_k(X) = g_k(T), k = 1, \dots, K.$$

Model: Neural Network

► Activation function σ(v): sigmoid σ(v) = 1/(1 + e^{-v}).

- Output function $g_k(T)$: For regression, identity function. In K-class classification, $g_k(T) = e^{T_k} / \sum_{l=1}^{K} e^{T_l}$ (softmax).
- Unknowns: bias and weights $\{b_{0m}, w_m; m = 1, \dots, M\}$ and $\{b'_{0k}, \beta_k; k = 1, \dots, K\}$. In total, M(p+1) + K(M+1) unknowns.
- Measure of fit: the sum-of-squared error

$$R(\theta) = \sum_{k=1}^{K} \sum_{i=1}^{N} (Y_k^{(i)} - f_k(X^{(i)}))^2.$$

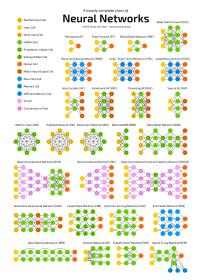
can be used for both regression and classification; the cross-entropy

$$R(\theta) = -\sum_{i=1}^{N} \sum_{k=1}^{K} Y_{k}^{(i)} \log f_{k}(X^{(i)})$$

for classification and the corresponding classifier is $G(x) = \operatorname{argmax}_k f_k(X)$.

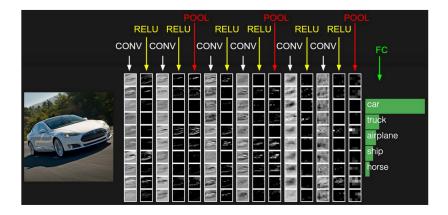
Model: Deep Neural Network / Deep Learning

- Deep neural network/deep learning: a neural network with more than one layers;
- Many variations including recurrent neural network (RNN), auto-encoder (AE), convolutional neural network (CNN);
- The variations are generally modification of the layer structure, activation function and input-output flow.

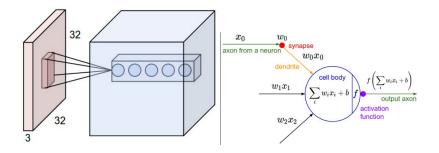


Model: Convolutional Neural Network

It is a deep network with special types of hidden layer: **convolutional layer**, **pooling layer**, and **fully-connected layer** (same hidden layer in regular neural networks).



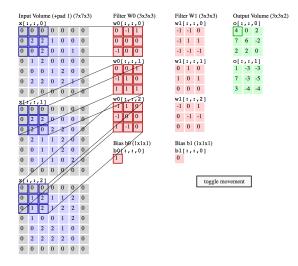
CNN: Convolutional Layer



- Applying the element-wise product between a convolutional kernel (a matrix) and the corresponding regions in the input matrix. Sum them the products up and add a bias term as the input of the next layer.
- Move the kernel along certain direction and with certain stride size.
- Possibly need zero padding.

CNN: Convolutional Layer Continued...

Same weights and bias are used for each of the 3×3 hidden neurons.

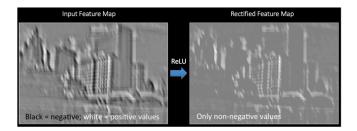


See http://cs231n.github.io/convolutional-networks/ for an automation illustration.

CNN: ReLU

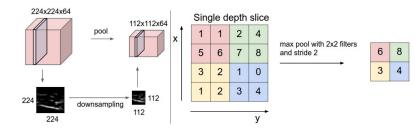
Rectified linear unit:

- Activation layer with max(0,x).
- Sparsity and feature selection.



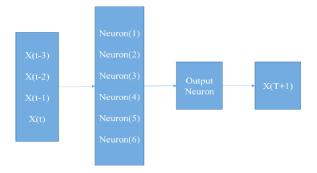
CNN: Pooling Layer

- Down-sample the input layer;
- Max pooling (most popular), average pooling;
- Applying filtering on local regions.

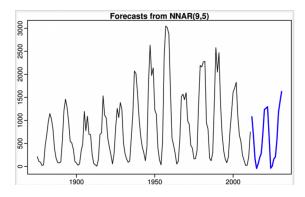


Application: Regression

When time series data shows nonlinearity, we can use neural network to build a neural network autoregression (*NNAR*) instead of *AR*. An *NNAR*(p, K) is a neural network with X_{t-1}, \ldots, X_{t-p} as inputs, K neurons in the hidden layer and X_t as the output. Following is an *NNAR*(4, 6).



Application: Regression



R code

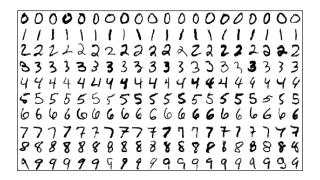
fit <- nnetar(sunspotarea)
plot(forecast(fit,h=20))</pre>

R code

fit <- nnetar(sunspotarea,lambda=0)
plot(forecast(fit,h=20))</pre>

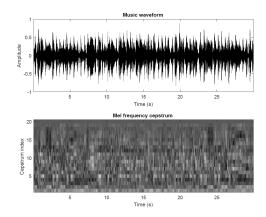
Application: Classification

- Handwriting recognition
- Music classification
- so on...



GTZAN Music genres classification

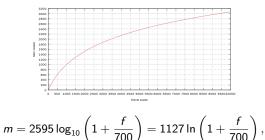
- ▶ n = 1000;
- ► *T* = 22,050 * 25 = 551,250;
- ► K = 10;
- Using 80% training 20% testing;
- Preprocessing;
- Classification.



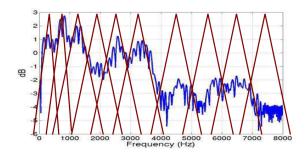
Mel-frequency cepstrum coefficients (MFCC)

MFCC's characterize the short-term power spectrum of a sound;

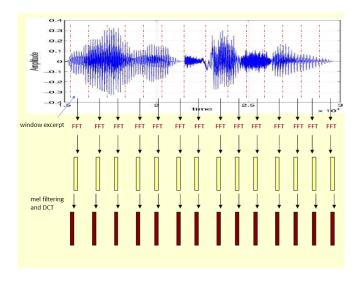
- 1. Take the Fourier transform of a windowed excerpt of a signal.
- 2. Map the powers of the spectrum obtained above onto the mel scale, using triangular overlapping kernel weights.



- 3. Take the logs of the powers at each of the mel frequencies.
- 4. Take the discrete cosine transform of the list of mel log powers, as if it were a signal.
- 5. Extract MFCCs as the amplitudes of the resulting spectrum.



- Apply triangle kernel weight on given frequencies to compute the power spectrum.
- Bandwidth is equal in mel scale, and different in original scale. (small in low frequency and large in high frequency).



Note: window width can be either overlapped or non-overlapped, we used window width of 100 ms with stride size of 25 ms.

Advantages:

- Approximates the human auditory system's response. Demo in http://www.apronus.com/music/flashpiano.htm
- Downsample the raw data by sampling in the a few frequencies (20hz-8000hz).

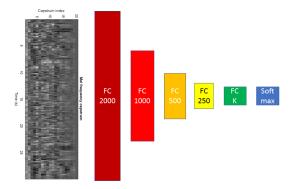
Demo in https://en.wikipedia.org/wiki/Audio_frequency

Utilize the local information, both in time domain and frequency domain.

	Frequency in hertz (MIDI note number)													
Octave Note	-1	0	1	2	3	4	5	6	7	8	9			
с	8.176 (0)	16.352 (12)	32.703 (24)	65.406 (36)	130.81 (48)	261.63 (60)	523.25 (72)	1046.5 (84)	2093.0 (96)	4186.0 (108)	8372.0 (120)			
C♯/D♭	8.662 (1)	17.324 (13)	34.648 (25)	69.296 (37)	138.59 (49)	277.18 (61)	554.37 (73)	1108.7 (85)	2217.5 (97)	4434.9 (109)	8869.8 (121)			
D	9.177 (2)	18.354 (14)	36.708 (26)	73.416 (38)	146.83 (50)	293.66 (62)	587.33 (74)	1174.7 (86)	2349.3 (98)	4698.6 (110)	9397.3 (122)			
E♭/D♯	9.723 (3)	19.445 (15)	38.891 (27)	77.782 (39)	155.56 (51)	311.13 (63)	622.25 (75)	1244.5 (87)	2489.0 (99)	4978.0 (111)	9956.1 (123)			
E	10.301 (4)	20.602 (16)	41.203 (28)	82.407 (40)	164.81 (52)	329.63 (64)	659.26 (76)	1318.5 (88)	2637.0 (100)	5274.0 (112)	10548.1 (124)			
F	10.914 (5)	21.827 (17)	43.654 (29)	87.307 (41)	174.61 (53)	349.23 (65)	698.46 (77)	1396.9 (89)	2793.8 (101)	5587.7 (113)	11175.3 (125)			
F≇/G♭	11.563 (6)	23.125 (18)	46.249 (30)	92.499 (42)	185.00 (54)	369.99 (66)	739.99 (78)	1480.0 (90)	2960.0 (102)	5919.9 (114)	11839.8 (126)			
G	12.250 (7)	24.500 (19)	48.999 (31)	97.999 (43)	196.00 (55)	392.00 (67)	783.99 (79)	1568.0 (91)	3136.0 (103)	6271.9 (115)	12543.9 (127)			
A♭/G♯	12.979 (8)	25.957 (20)	51.913 (32)	103.83 (44)	207.65 (56)	415.30 (68)	830.61 (80)	1661.2 (92)	3322.4 (104)	6644.9 (116)				
Α	13.750 (9)	27.500 (21)	55.000 (33)	110.00 (45)	220.00 (57)	440.00 (69)	880.00 (81)	1760.0 (93)	3520.0 (105)	7040.0 (117)				
B⊮/A≴	14.568 (10)	29.135 (22)	58.270 (34)	116.54 (46)	233.08 (58)	466.16 (70)	932.33 (82)	1864.7 (94)	3729.3 (106)	7458.6 (118)				
в	15.434 (11)	30.868 (23)	61.735 (35)	123.47 (47)	246.94 (59)	493.88 (71)	987.77 (83)	1975.5 (95)	3951.1 (107)	7902.1 (119)				

Final Model

- Attempted typical CNN, but got disappointing results...
 - Low image features in MFCC's matrix;
 - Algorithm not converged;
 - ▶ Li et al. (2010) used 2 hours to training a CNN to classify only 3 genres.
- A deep fully connected CNN, implemented in MATLAB, trained in less than 2 minutes.



Implemented in Matlab. Only a few lines of codes, and less than five minutes of training.

```
layers = [imageInputLayer([21 997 1])
    fullyConnectedLayer(2000)
    fullyConnectedLayer(1000)
    fullyConnectedLayer(500)
    fullyConnectedLayer(250)
    fullyConnectedLayer(n_class)
    softmaxLayer
    classificationLayer()];
```

Training on single GPU. Initializing image normalization.

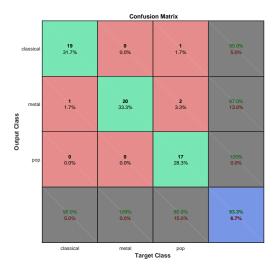
===	Epoch	1	Iteration	1	Time Elapsed	1	Mini-batch	1	Mini-batch	Base Learning
1		I.		I	(seconds)	I.	Loss	I.	Accuracy	Rate
===										
1	1	1	1	Т	1.98	I.	1.3830	T.	28.13%	1.00e-04
1	25	1	50	T	4.05	I.	1.2878	I.	68.75%	1.00e-04
1	50	I.	100	T	5.86	I.	1.1332	I.	66.41%	1.00e-04
1	75	T.	150	T	7.67	I.	0.9525	T.	60.94%	1.00e-04
1	100	I.	200	T	9.47	Ľ.	0.8406	T.	57.03%	1.00e-04
1	125	Ľ.	250	T	11.28	Ľ.	0.7804	T.	59.38%	1.00e-04
1	150	Ľ.	300	T	13.08	Ľ.	0.7326	T.	66.41%	1.00e-04
1	175	T.	350	T	14.90	Ľ.	0.6839	T.	72.66%	1.00e-04
1	200	T.	400	T	16.77	Ľ.	0.6305	T.	78.91%	1.00e-04
1	225	T.	450	T	18.62	Ľ.	0.5721	T.	82.81%	1.00e-04
1	250	ī.	500	T	20.42	Ľ.	0.5114	ī.	87.50%	1.00e-04
1	275	ī.	550	T	22.23	Ľ.	0.4514	T.	89.06%	1.00e-04
1	300	I.	600	Ì.	24.03	i.	0.3944	i.	91.41%	1.00e-04

Binary results

	blues	classical	country	disco	hiphop	jazz	metal	рор	reggae	rock
blues	100.0%	97.5%	72.5%	82.5%	70.0%	87.5%	80.0%	90.0%	72.5%	72.5%
classical	97.5%	100.0%	92.5%	95.0%	100.0%	87.5%	100.0%	100.0%	97.5%	97.5%
country	72.5%	92.5%	100.0%	82.5%	77.5%	77.5%	95.0%	85.0%	85.0%	65.0%
disco	82.5%	95.0%	82.5%	100.0%	70.0%	95.0%	92.5%	80.0%	72.5%	70.0%
hiphop	70.0%	100.0%	77.5%	70.0%	100.0%	82.5%	90.0%	82.5%	72.5%	65.0%
jazz	87.5%	87.5%	77.5%	95.0%	82.5%	100.0%	97.5%	97.5%	80.0%	87.5%
metal	80.0%	100.0%	95.0%	92.5%	90.0%	97.5%	100.0%	92.5%	100.0%	92.5%
рор	90.0%	100.0%	85.0%	80.0%	82.5%	97.5%	92.5%	100.0%	90.0%	92.5%
reggae	72.5%	97.5%	85.0%	72.5%	72.5%	80.0%	100.0%	90.0%	100.0%	77.5%
rock	72.5%	97.5%	65.0%	70.0%	65.0%	87.5%	92.5%	92.5%	77.5%	100.0%

- Overall above 80%.
- Lower accuracies: country vs. blues (72.5%), hiphop vs. blues (70%), hiphop vs. disco (70%), rock vs. blues (72.5%), country vs. rock (65%), and hiphop vs. rock (65%).
- classical, metal and pop are the three most distinguishable genres;
- blues, country and rock are the three least distinguishable genres.

Multi-category results



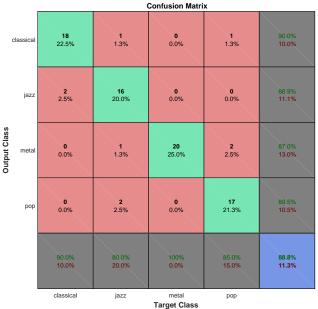
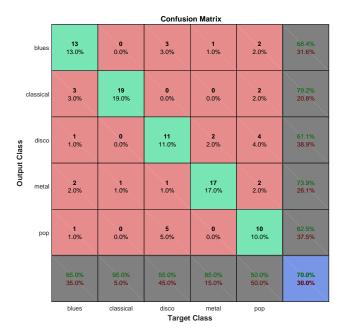


	Table	1: DAG SV	M Resu	lts		Table 2: Neural Network Results							
	Actual							al					
		Classical	Jazz	Metal	Pop			Classical	Jazz	Metal	Pop		
pa	Classical	29	4	1	1	p	Classical	14	0	0	0		
ict	Jazz	1	20	1	0	edicted	Jazz	1	12	4	0		
Predicted	Metal	0	4	26	0		Metal	0	0	13	0		
P	Pop	0	2	2	29	- F	Pop	1	0	0	19		
Accuracy		97%	67%	87%	97%	A	ccuracy	88%	100%	76%	100%		

Table 3: k-Means Results

Table 4: k-NN Results

		Actual							Actual				
		Classical	Jazz	Metal	Pop				Classical	Jazz	Metal	Pop	
p	Classical	14	16	0	0	7	2	Classical	26	9	0	2	
icte	Jazz	2	27	1	0		2	Jazz	4	20	4	1	
edicted	Metal	0	0	27	3	13	B	Metal	0	1	24	0	
Pr	Pop	0	1	1	28	d		Pop	0	0	2	27	
Accuracy		88%	61%	93%	90%		А	ccuracy	87%	67%	80%	90%	



		Confusion Matrix													
	blues	8 4.0%	0 0.0%	7 3.5%	0 0.0%	1 0.5%	0 0.0%	0 0.0%	1 0.5%	3 1.5%	3 1.5%	34.8% 65.2%			
	classical	0 0.0%	17 8.5%	1 0.5%	0 0.0%	1 0.5%	1 0.5%	0 0.0%	0 0.0%	1 0.5%	0 0.0%	81.0% 19.0%			
	country	5 2.5%	1 0.5%	7 3.5%	1 0.5%	3 1.5%	1 0.5%	0 0.0%	1 0.5%	2 1.0%	0 0.0%	33.3% 66.7%			
	disco	2 1.0%	0 0.0%	1 0.5%	10 5.0%	3 1.5%	3 1.5%	1 0.5%	0 0.0%	2 1.0%	5 2.5%	37.0% 63.0%			
Output Class	hiphop	0 0.0%	0 0.0%	0 0.0%	3 1.5%	4 2.0%	0 0.0%	0 0.0%	0 0.0%	3 1.5%	1 0.5%	36.4% 63.6%			
	jazz	4 0 0		1 0.5%	0 0.0%	0 0.0%	8 4.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	80.0% 20.0%			
no	metal			0 0.0%	7 7		1 0.5%	18 9.0%	2 1.0%	1 0.5%	5 2.5%	46.2% 53.8%			
	рор	0 0.0%	0 0.0%	1 0.5%	3 1.5%	1 0.5%	0 0.0%	1 0.5%	16 8.0%	0 0.0%	2 1.0%	66.7% 33.3%			
	reggae	0 0.0%	0 0.0%	1 0.5%	0 0.0%	1 0.5%	4 2.0%	0 0.0%	0 0.0%	5 2.5%	2 1.0%	38.5% 61.5%			
	rock	1 0.5%	1 0.5%	1 0.5%	1 0.5%	0 0.0%	2 1.0%	0 0.0%	0 0.0%	3 1.5%	2 1.0%	18.2% 81.8%			
		40.0% 60.0%	85.0% 15.0%	35.0% 65.0%	50.0% 50.0%	20.0% 80.0%	40.0% 60.0%	90.0% 10.0%	80.0% 20.0%	25.0% 75.0%	10.0% 90.0%	47.5% 52.5%			
		blues	classical	country	disco	hiphop Tai	jazz rget Cla	metal ISS	рор	reggae	rock				

Confusion Matrix

Conclusion

- the deep neural network yields competitive classification accuracy.
- advantage: the prediction power;
- disadvantage: the interpretability;
- the MFCC's capture the key features in the musical audio signals.

Thank You!